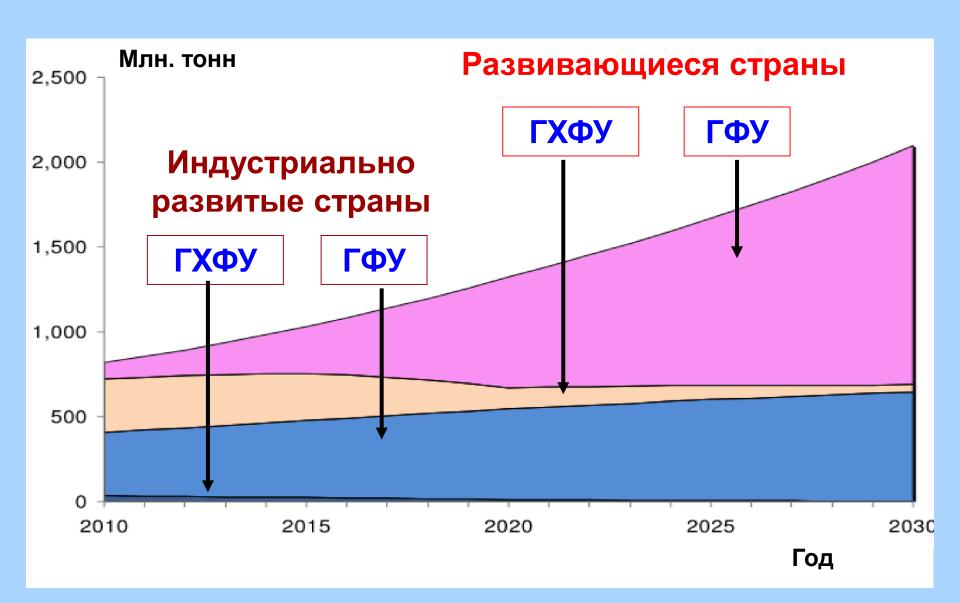
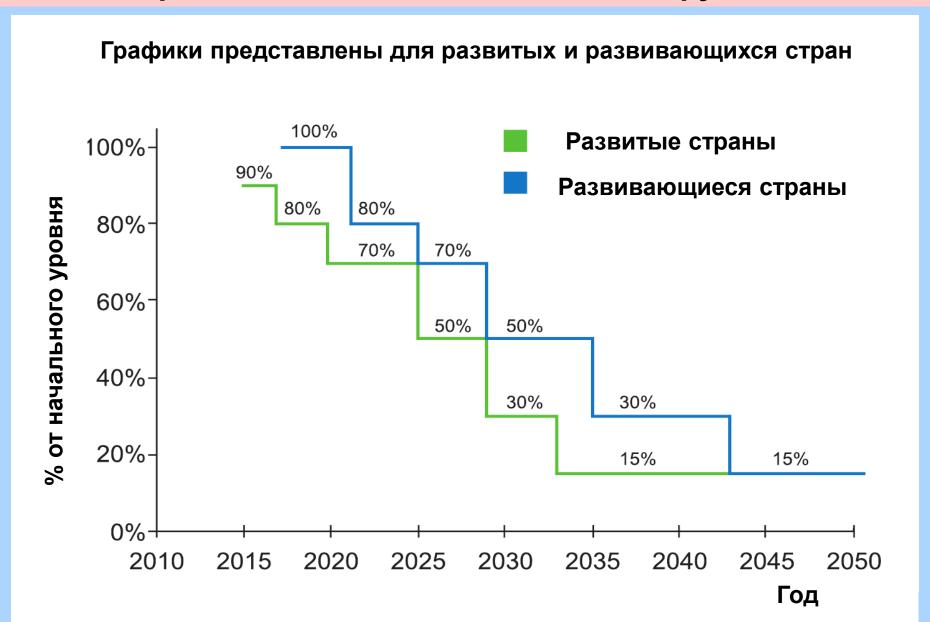
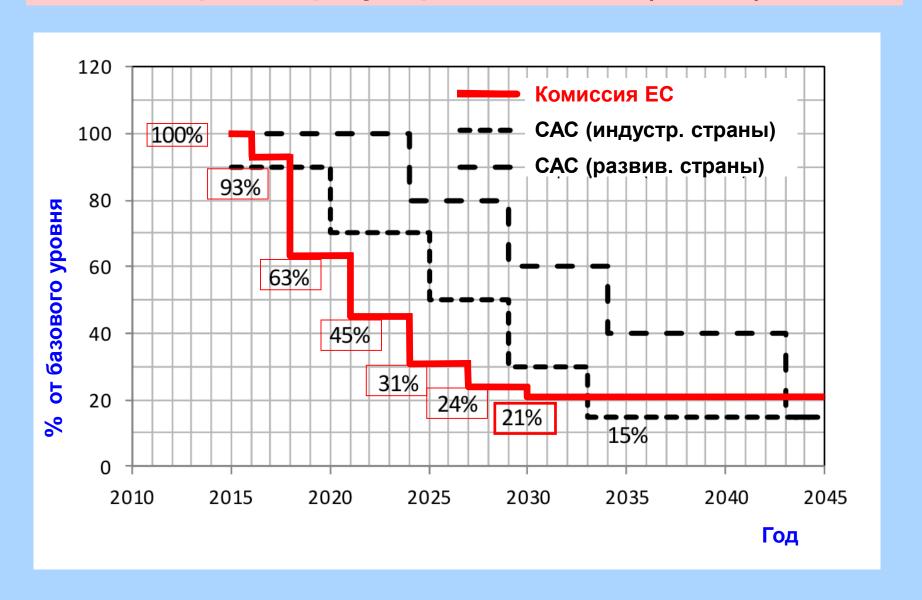

Причины возрастания интереса к природным холодильным агентам

1. Требуется эффективная замена холодильным агентам группы ГХФУ, выводимым из обращения в соответствии с Монреальским Протоколом.

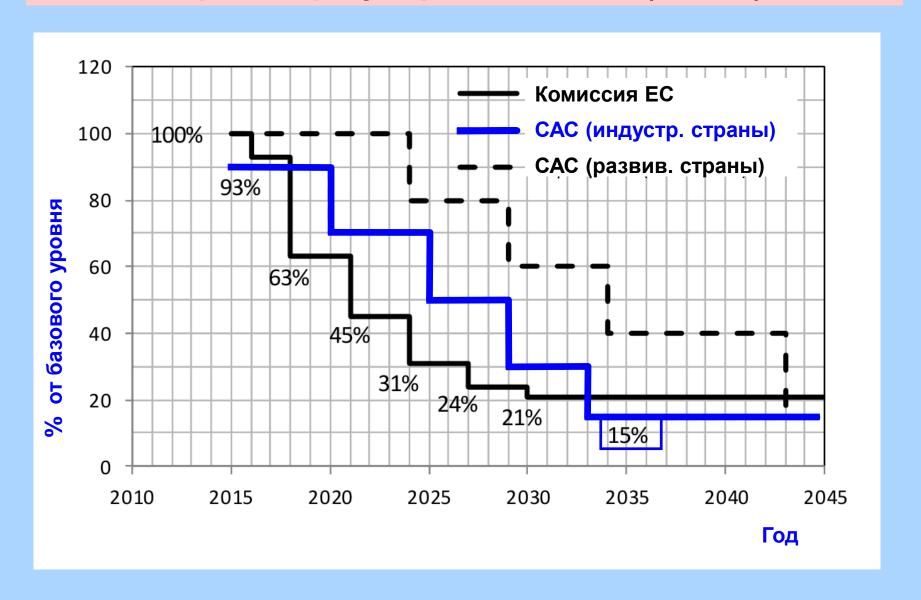

Холодильные агенты для замены ГХФУ

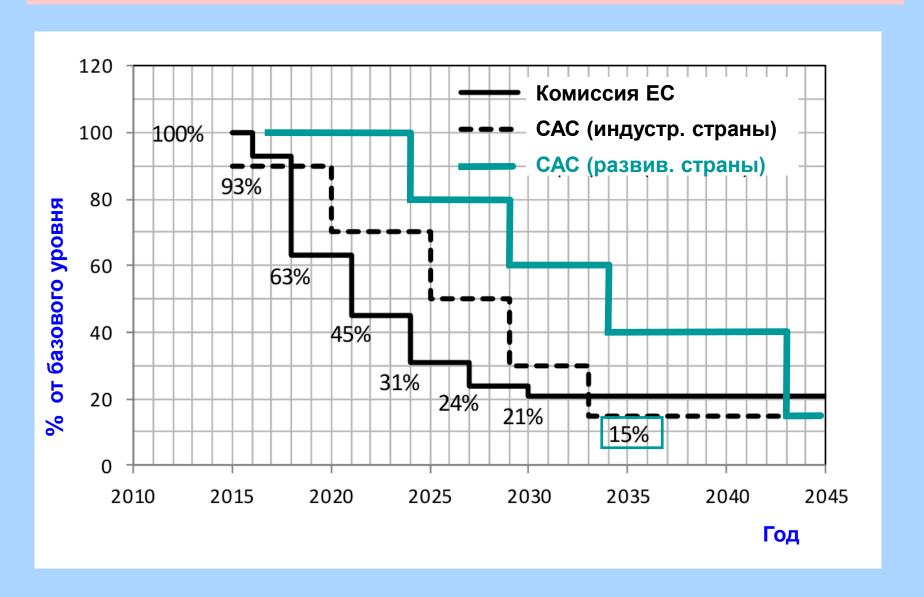
Потенциал глобального потепления основных холодильных агентов группы ГФУ в сравнении с R22


Прогноз потребления холодильных агентов групп ГХФУ и ГФУ в период с 2010 по 2030 годы


Причины возрастания интереса к природным холодильным агентам

- 1. Требуется эффективная замена холодильным агентам группы ГХФУ, выводимым из обращения в соответствии с Монреальским Протоколом.
- 2. Возникает необходимость выводить из употребления холодильные агенты с высоким Потенциалом Глобального Потепления (ПГП), как парниковые газы в соответствии с Киотским Протоколом.


Предложения стран Северной Америки (2011 г.) к выводу из обращения холодильных агентов группы ГФУ


Предложения ЕС и группы северо-американских стран по регулированию ГФУ (2012 г.)

Предложения ЕС и группы северо-американских стран по регулированию ГФУ (2012 г.)

Предложения ЕС и группы северо-американских стран по регулированию ГФУ (2012 г.)

Причины возрастания интереса к природным холодильным агентам

- 1. Требуется эффективная замена холодильным агентам группы ГХФУ, выводимым из обращения в соответствии с Монреальским Протоколом.
- 2. Возникает необходимость выводить из употребления холодильные агенты с высоким Потенциалом Глобального Потепления (ПГП), как парниковые газы в соответствии с Киотским Протоколом.
- 3. Принимаются меры принудительного регулирования парниковых газов, стимулирующие переход на холодильные агенты, безопасные для окружающей среды.

Запрет на использование ГФУ (Предложение Еврокомиссии, ноябрь, 2012 г.)

 $c \Pi \Gamma \Pi > 150$

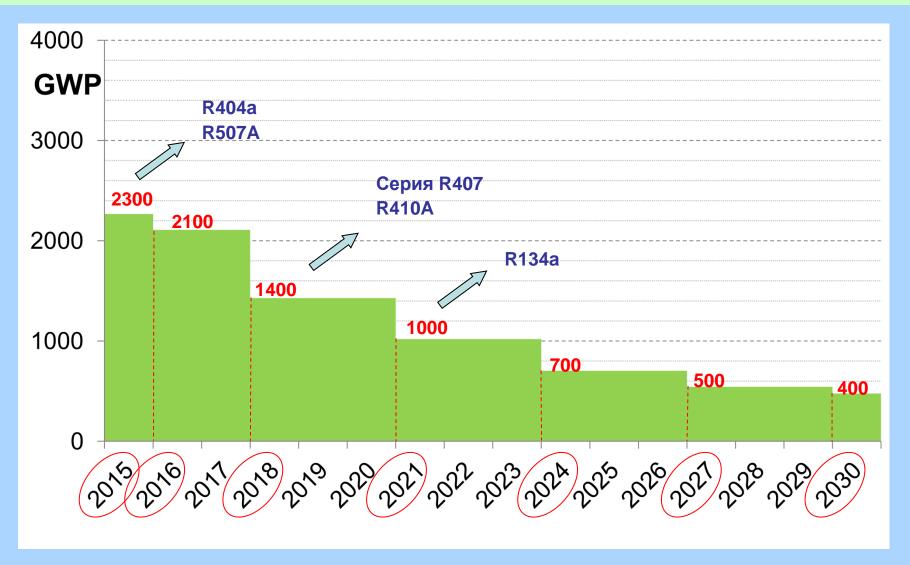
c 1.01.2015

Холодильники и морозильники в коммерческом холоде

 $c \Pi \Gamma \Pi > 2500$

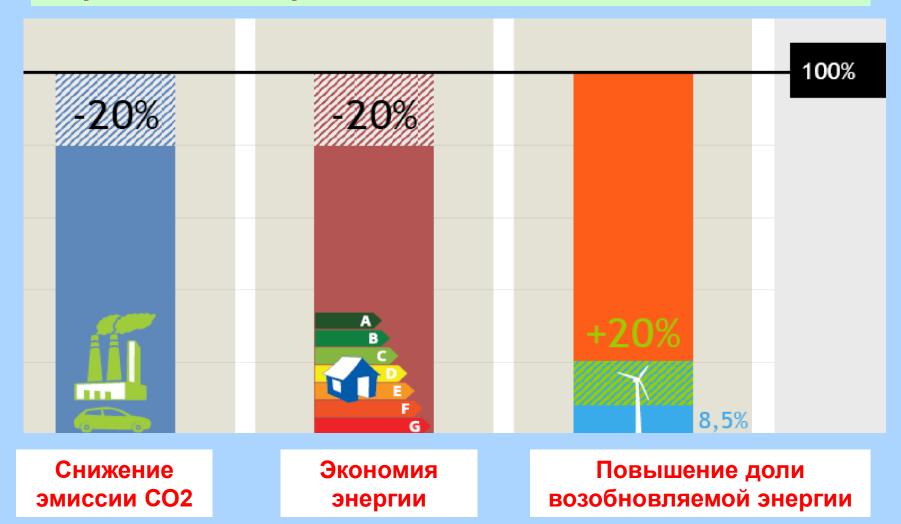
c 1.01.2017

с ПГП > 150


c 1.01.2020

Бытовые кондиционеры

с ПГП > 150


c 1.01.2020

План понижения допустимого уровня ПГП холодильных агентов

Европейская стратегия на 2020 год – план 20-20-20

Европа

Дания, Швейцария, Австрия, Люксембург

Ограничение заправки и запрет на использование ГФУ в отдельных видах оборудования

Норвегия, Австрия, Дания

Такса за использование ГФУ

Германия

Субсидии на использование природных хладагентов

Северная Америка

США

Ограничение заправки ГФУ

Канада

Субсидии на использование природных хладагентов

Азия

Китай

Гранты на разработку планов менеджмента природных холодильных агентов

Япония

Субсидии на использование природных хладагентов

Австралия

Австралия

Ограничение заправки ГФУ

Такса за использование ГФУ

Необходимость в стандартах на природные холодильные агенты для развивающихся стран

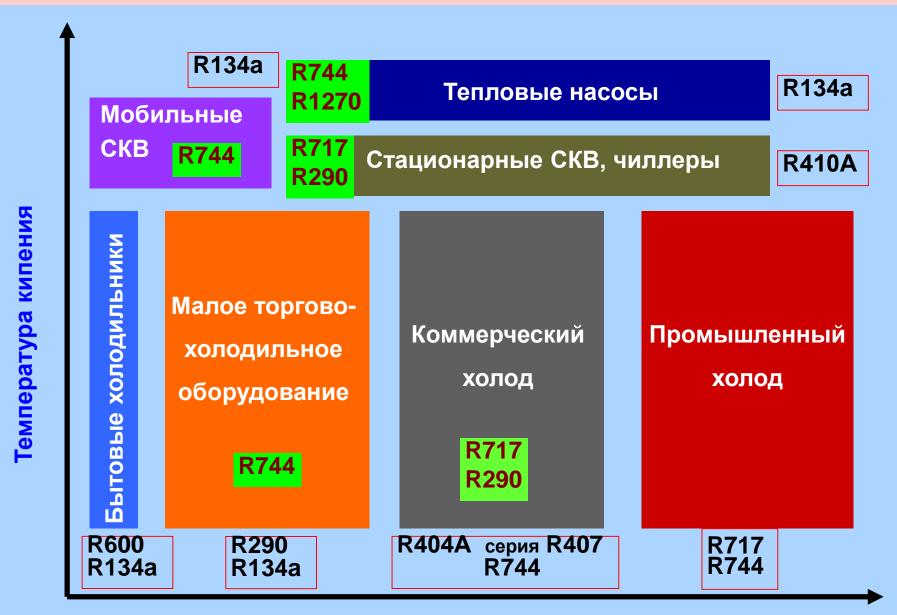
Использование природных холодильных агентов

Сектор	Тип хладагента	Использование			
		Индустри- альные страны	Развива- ющиеся страны	Всего в мире	
Промышленные холодильные системы	NH3, CO2, HC	92 %	40 %	65 %	
Промышленное кондиционирование воздуха	NH3, CO2, HC	40 %	15 %	25 %	
Домашние холодильники	НС	51 %	22 %	36 %	

Современные требования к стандартам на холодильные агенты

(из материалов вебинара ЮНЕП Озонэкшн 4.07.2013)

Стандарты на холодильные агенты и их применение в холодильной технике и кондиционировании воздуха должны включать следующие разделы:


- 1.Безопасность.
- 2.Охрана окружающей среды.
- 3. Энергоэффективность.

Общие вопросы стандартизации в области использования холодильных агентов

Организации, занимающиеся разработкой стандартов

Сфера применения природных холодильных агентов

Холодопроизводительность

Серия 100 (Этановый ряд)	R170 (C ₂ H ₆ , Этан)	Углеводород
Серия 200 (Пропановый ряд)	R290 (C ₃ H ₈ , Пропан)	Углеводород
Серия 600 (Органические		
соединения)	R600a (C ₄ H ₁₀ , Изобутан)	Углеводород
Серия 700 (Неорганические		
соединения)	R717 (NH ₃)	Аммиак
	R718 (H ₂ O)	Вода
	R729	Воздух
	R744 (CO ₂)	Углекислый газ
	(Ди	оксид углерода)
Серия 1000	R1270 (С ₃ Н ₆ , пропилен)	Углеводород

Группы безопасности

	Токсичность		
Воспламеняемость	Низкая	Высокая	
Высокая	A 3	B 3	
Низкая	A2	B2	
	A2L	B2L	
Не воспламеняется	A 1	B1	

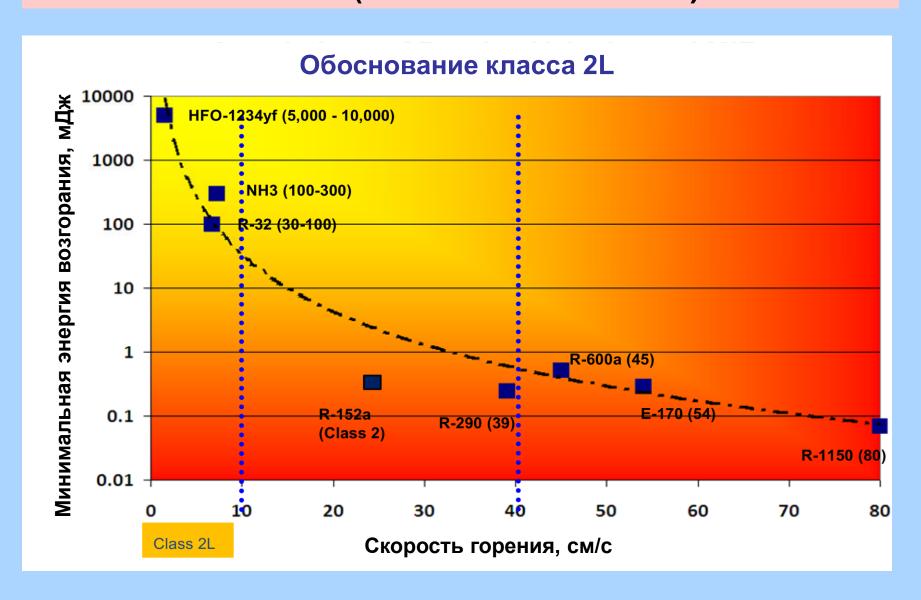
Токсичность

Критерий: Практически допустимая концентрация в воздухе (PEL)

Класс А < 400 ppm

Класс В > 400 ppm

Воспламеняемость (пожароопасность)


Критерии: Нижний уровень воспламеняемости (LFL), энергия возгорания (HC)

Класс 1 Не воспламеняемые

Класс 2 LFL > 0,1 кг/м3, HC < 19 мДж/кг

Класс 2L Как для Класса 2, но при скорости горения < 0,1 м/с

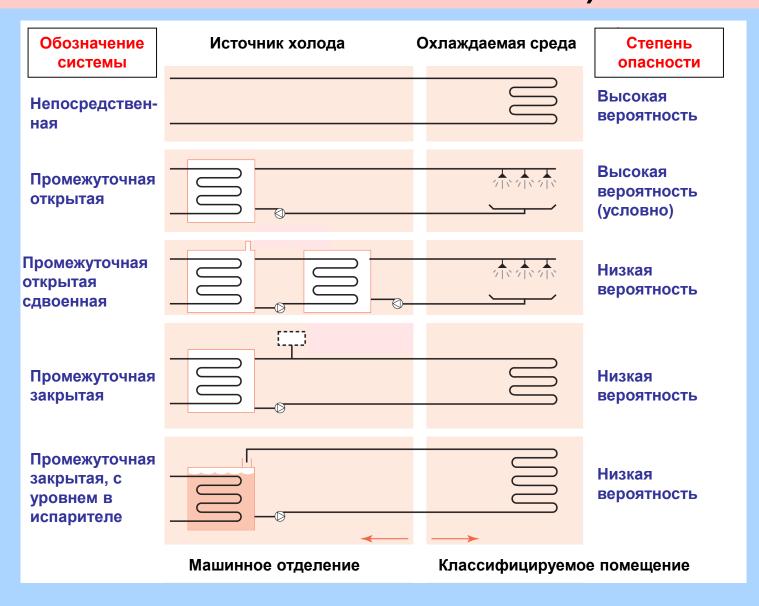
Класс 3 LFL < 0,1 кг/м3, HC > 19 мДж/кг

Место подкласса 2L в новой классификации

Классификация основных природных холодильных агентов (ПБ 09-592-03)

Все хладагенты по совокупности свойств распределены на 3 группы:

Группа 1. Нетоксичные и невзрывоопасные холодильные агенты.


Группа 2. Токсичные холодильные агенты и хладагенты, смеси паров которых с воздухом имеют нижнюю границу концентрационного предела распространения пламени хладагента 3,5% и более.

Группа 3. Холодильные агенты, смеси паров которых с воздухом имеют нижнюю границу концентрационного предела распространения пламени менее 3,5%.

Характеристики основных природных холодильных агентов

	Показатели				
Холодильный агент	Температу- ра кипения, °С	Критичес- кая темпера- тура , °C	Класс безопас- ности	Лимит воспламеняемо- сти в воздухе, %	Фактор риска
Аммиак	-33	133	B2 (A2L)	15-28	Токсичность
Диоксид углерода	-78	31	A 1	-	Высокое давление
Пропан	-42	97	А3	2,1 – 9,5	Взрыво- опасность
Изобутан	-12	135	А3	1,6 – 8,4	Взрыво- опасность
Пропилен	-48	91	А3	2,0 – 2,7	Взрыво- опасность

Классификация схем холодильных систем (ASHRAE 15-2004 и ПБ 09-592-03)

Нормы заправки систем холодильными агентами (углеводородами) в соответствии со стандартами (EN 378:2007; IEC 60335-2-24...-2-40...-2-89)

Домашние холодильники – до 150 г. (R600a).

Небольшие холодильники и морозильники - до 150 г.

Заводские торговые холодильники - до 150 г.

Мелкое торговое холодильное оборудование – от 100 г до 1 кг.

Автономные кондиционеры, включая сплит-системы – от 150 г до 1 кг (R290, R1270).

Чиллеры – до 25 кг (R290, R1270).

Промышленные и централизованные системы – от 1 кг до 25 кг (в зависимости от места нахождения холодильного агента)

Нормы заправки систем холодильными агентами (углеводородами) в соответствии со стандартами (EN 378:2007; IEC 60335-2-24...-2-40...-2-89)

	Категории А, В		Категория С		Категории D, E	
Место содержания холодильного агента	Холодиль- ные установки	Тепловые насосы и СКВ	Холодиль- ные установки	Тепловые насосы и СКВ	Холодиль- ные установки	Тепловые насосы и СКВ
Вне машинного отделения	1,5 кг	1 кг	2,5 кг	1 кг	10 кг	1 кг
Сторона высокого давления в машин- ном отделении	1,5 кг	1 кг	2,5 кг	1 кг	25 кг	1 кг
Все в машинном отделении	5 кг	-	5 кг	-	Не ограни- чивается	-
В защитном корпусе	-	5 кг	-	5 кг	-	5 кг
Под землей	1 кг	1 кг	1 кг	1 кг	1 кг	1 кг

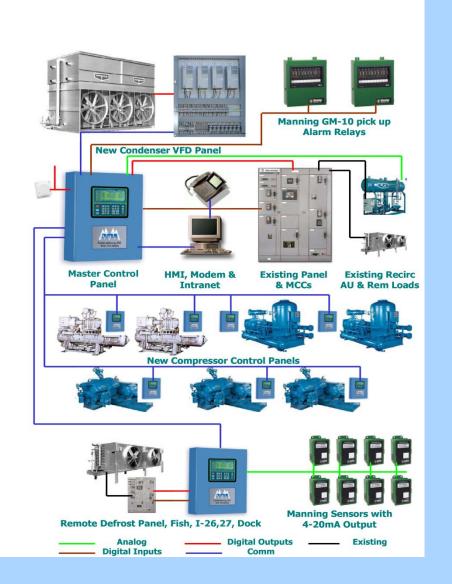
Ключевые элементы безопасности машинного отделения (ASHRAE 15, IMC/IFC 2007)

Противопожарные конструкции

Доступ к системе

Вывески и маркировка

Электрическая безопасность


Отсутствие открытого огня

Система сброса давления

Вентиляция

Обнаружение и оповещение

Аварийный контроль

